Metabolic pathway flux enhancement by synthetic protein scaffolding.
نویسندگان
چکیده
Spatial control over enzyme organization presents a promising posttranslational strategy for improving metabolic flux. Directly tethering enzyme polypeptides has had inconsistent success. Use of a separate scaffold molecule, built from modular protein-protein interaction domains, provides designable control over enzyme assembly parameters, including stoichiometry, as well as providing scalability for multiple enzymes. Thus, metabolic flux can be optimized by expression of these scaffolds in vivo. It is important to note that exploration of the use of synthetic scaffolds for improving metabolic flux is in its early stages. Accordingly, in this chapter, we describe efforts to date, hypotheses for scaffold function, and parameters to consider for application to new pathways.
منابع مشابه
Modification of targets related to the Entner–Doudoroff/pentose phosphate pathway route for methyl-d-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli
BACKGROUND In engineered strains of Escherichia coli, bioconversion efficiency is determined by not only metabolic flux but also the turnover efficiency of relevant pathways. Methyl-D-erythritol 4-phosphate (MEP)-dependent carotenoid biosynthesis in E. coli requires efficient turnover of precursors and balanced flux among precursors, cofactors, and cellular energy. However, the imbalanced suppl...
متن کاملControlling Central Carbon Metabolism for Improved Pathway Yields in Saccharomyces cerevisiae.
Engineering control of metabolic pathways is important to improving product titers and yields. Traditional methods such as overexpressing pathway enzymes and deleting competing ones are restricted by the interdependence of metabolic reactions and the finite nature of cellular resources. Here, we developed a metabolite valve that controls glycolytic flux through central carbon metabolism in Sacc...
متن کاملCreating metabolic demand as an engineering strategy in Pseudomonas putida – Rhamnolipid synthesis as an example
Metabolic engineering of microbial cell factories for the production of heterologous secondary metabolites implicitly relies on the intensification of intracellular flux directed toward the product of choice. Apart from reactions following peripheral pathways, enzymes of the central carbon metabolism are usually targeted for the enhancement of precursor supply. In Pseudomonas putida, a Gram-neg...
متن کاملSynthetic metabolons for metabolic engineering.
It has been proposed that enzymes can associate into complexes (metabolons) that increase the efficiency of metabolic pathways by channelling substrates between enzymes. Metabolons may increase flux by increasing the local concentration of intermediates, decreasing the concentration of enzymes needed to maintain a given flux, directing the products of a pathway to a specific subcellular locatio...
متن کاملExploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803
BACKGROUND Molecular engineering of the intermediary physiology of cyanobacteria has become important for the sustainable production of biofuels and commodity compounds from CO2 and sunlight by "designer microbes." The chemical commodity product L-lactic acid can be synthesized in one step from a key intermediary metabolite of these organisms, pyruvate, catalyzed by a lactate dehydrogenase. Syn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Methods in enzymology
دوره 497 شماره
صفحات -
تاریخ انتشار 2011